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A STUDY OF W I N G  IN NONLINEAR OSCILIATIONS 
b 

BY 
Maurice L. Rasmussen 

Stanford University 

and 

Donn B. Kirk 
Ames Research Center 

An inves t iga t ion  i s  made of nonlinear o sc i l l a t ions  i n  which the  damping 
and s t a t i c  moments a r e  represented by a r b i t r a r y  polynomial functions of t he  
dependent var iable .  
e a r i t i e s  a r b i t r a r i l y  la rge ,  an approximate solut ion i s  establ ished which leads 
t o  expressions f o r  the  damping decrement involving e l l i p t i c  i n t eg ra l s  and 
gamma funct ions i n  spec ia l  cases. 
a generalized formula f o r  t h i s  parameter i s  obtained that i s  va l id  f o r  a wide 
range of nonl inear i t ies  i n  both the  damping and s t a t i c  moments. This formula 
i s  useful ,  fo r  instance,  i n  deducing the dynamic-stability parameters of 
miss i les  observed i n  nearly planar motion i n  f r e e  f l i g h t .  

When t h e  nonlinear damping i s  small but the  s t a t i c  nonlin- 

An "effective l i nea r  damping" i s  defined and 

INTRODUCTION 

k n y  physical  systems a r e  describable only i n  terms of nonlinear ordinary 
One example i s  the large-amplitude pi tching motion of d i f f e r e n t i a l  equations. 

hypersonic aerodynamic configurations f o r  which the  frequency can be strongly 
dependent on amp1itude.l 
desired t o  dedxce the  aercdynamic properkies, l i nea r  and nonlinear, from obser- 
vat ions of a given s e t  of osc i l la t ions .  
e f f ec t s  of t he  nonl inear i t ies  involved i n  t he  d i f f e r e n t i a l  equations governing 
the  motion i s  very important. 

I n  the  analysis  of ba l l i s t i c - r ange  data, it i s  

Toward t h i s  end, a knowledge of t he  

I n  t h i s  study, we w i l l  be concerned ch ief ly  with the  damping of o sc i l l a -  
t i o n s  of nonlinear systems. Although we w i l l  be in te res ted  i n  solut ions t o  the  
nonlinear equations f o r  t h e i r  own sake, the eventual goal  w i l l  be t o  derive 
formulas allowing t h e  ex t rac t ion  of both l i n e a r  and nonlinear damping param- 
e t e r s  from a s e t  of data. From the  standpoint of aerodynamics, t h i s  goal  i s  
equivalent t o  determining from data the dynamic-stability parameters of a m i s -  
s i le o s c i l l a t i n g  i n  a plane. A t heo re t i ca l  study indicat ing the  form of the 

lAlthough the  present ana lys i s  i s  applicable t o  a w i d e  var ie ty  of osc i l -  
l a to ry  phenomena, t he  text i s  cas t  i n  terms of pi tching osc i l l a t ions  of bodies 
having nonlinear damping and s t a t i c  moments i n  f l i g h t  i n  a medium of constant 
density.  



nonl inear i t ies  t o  be expected i n  t h e  dynamic-stability parameters can be found 
i n  reference 1. ' 
wind tunnel a r e  discussed i n  reference 2. 

Aspects of obtaining f r ee - f l i gh t  damping i n  a conventional 

Since w e  w i l l  be in t e re s t ed  i n  problems i n  which some of the nonlineari- 

Two 

a per turba t ion  technique (refs. 5 and 6) and a quasi-l inear tech- 

Although these  methods are qui te  general  i n  that 

t i e s  may be la rge ,  conventional methods of ana lys i s  i n  which a l l  non l inea r i t i e s  
are considered small (see,  e.g., refs. 3 and 4) are not always su i tab le .  
methods that treat l a rge  nonl inear i t ies  i n  t h e  s t a t i c  moment have been devised 
by Murphy: 
nique ( r e f .  7) that y ie lds  r e s u l t s  e s s e n t i a l l y  t h e  same as those of Coakley, 
Ia i tone ,  and Maas (ref.  8 ) .  
they are applicable f o r  combined p i tch ing  and yawing motions, only cubic s t a t i c  
moments are  discussed, and e x p l i c i t  damping formulas f o r  only l i n e a r  damping i n  
planar and near-circular o s c i l l a t i o n s  are derived and p lo t t ed .  
and Barton ( r e f .  9 )  derived formulas f o r  t h e  e f f ec t ive  damping of nonlinear 
o sc i l l a t ions ,  but considered t h e  s t a t i c  moment t o  be l i n e a r .  

Redd, Olsen, 

Many aerodynamic systems a r e  not describable by cubic s t a t i c  moments, and 
quin t ic  or higher order polynomials are of ten  e s s e n t i a l  f o r  proper data reduc- 
t i o n .  There i s  reason t o  expect that i f  t h e  s t a t i c  moment requi res  descr ip t ion  
by higher order polynomials, then the  damping moment w i l l  a l s o .  It i s  desir- 
ab le ,  therefore ,  t o  understand the  influence of a r b i t r a r y  nonlinear damping and 
s t a t i c  moments on o s c i l l a t o r y  motions. The in t en t  of t h e  present paper i s  t o  
contr ibute  t o  th i s  understanding. 

The ana lys is  proceeds along two d i s t i n c t  l i n e s  after appropriate t r ans fo r -  
mations are  used t o  render t h e  o r i g i n a l  second-order d i f f e r e n t i a l  equation 
i n t o  an equivalent i n t e g r a l  equation on t h e  one hand and an equivalent first- 
order d i f f e r e n t i a l  equation on t h e  other .  By means of t h e  i n t e g r a l  equation, 
f o r  which a spec ia l  exact so lu t ion  exists, an approximate so lu t ion  i s  found 
that i s  va l id  f o r  la rge  damping non l inea r i t i e s  and small e f fec t ive  s t a t i c  non- 
l i n e a r i t i e s .  For small damping but a r b i t r a r i l y  la rge  non l inea r i t i e s  i n  t h e  
s t a t i c  moment, a n  approximate so lu t ion  i s  then found by u t i l i z i n g  t h e  f irst-  
order d i f f e r e n t i a l  equation. For t h i s  lat ter l i n e  of ana lys i s ,  t he  damping 
decrement can be conveniently represented by an "ef fec t ive  l i n e a r  damping," 
which can be evaluated i n  terms of quadratures leading t o  e l l i p t i c  i n t e g r a l s  
and gamma functions i n  spec ia l  cases. 
t u r e  expressions, a s implif ied approximate formula f o r  t h e  e f f ec t ive  l i n e a r  
damping i s  devised that i s  extremely accurate f o r  a wide range of nonlinear 
parameters and, fu r the r ,  i s  amenable t o  data-reduction techniques. 

Based on l imi t ing  values of t h e  quadra- 
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value of Y f o r  zero damping 

mth order expansion t e r m  in Y (eq. ( 5 6 ) )  

dependent var iable  and amplitude of nonlinear o s c i l l a t i o n  

a pa r t i cu la r  maximum amplitude 

n th  maximum amplitude 

(n+l) th  maximum amplitude 

i n i t i a l  amplitude of y 

zeroth order approximation (eq. (50)  ) 

defined by equation (79b) 

tan' l( H0/2 V) or  sin' Ho/2,&) 

m2(% + m J  

1 ~ 1 ~ ' ~  if + 0, 1 % y ~ 1 ~ / ~  if  = 0 

frequency var iable  defined by equation ( 2 8 ~ )  

angular frequency 

RASIC ANALYSIS 

The Basic Equation 

Y 

In t h i s  study we wish t o  consider o sc i l l a t ions  that are influenced by non- 
l i n e a r i t i e s  i n  both t h e  damping and s t a t i c  forces  or moments. 
that t h e  nonl inear i t ies  are functions of t he  dependent var iable  only. 

W e  shall assume 

Consider a nonlinear o sc i l l a t ion  t o  be governed by the  following d i f f e r -  
I 

en t i a1  equation f o r  y = y ( t ) :  1 

4 
1 



m e  middle term represents  the damping moment, the  last t e r m ,  t he  s t a t i c  
res tor ing  moment. 
damping and s t a t i c  moments as the l inear  moment. 
polynomials terminated by s = 4 as quadratic, cubic, and 
quin t ic  moments, respectively.  When Hs and Ms a r e  nonzero only f o r  even 
values of s, the motion i s  ca l led  symmetric; when Hs and Ms e x i s t  f o r  odd 
values of s, t he  motion i s  ca l led  unsymmetric. Symmetric motions a r e  of the 
grea te r  i n t e r e s t ,  but  unsymmetric motions, such as osc i l l a t ions  about a t r i m  
angle i n  aerodynamics, do occur. 

W e  shall refer t o  the term represented by s = 0 i n  both the 
Similarly,  we shall refer t o  

s = 1, s = 2, and 

Equation (1) includes as spec ia l  cases several  well-known equations. 
H, # 0, % # 0, but  
well-known solution. Hs = 0, s # 0 ,  2; M, # 0 and 
Ms = 0, s # 0, then equation (1) reduces t o  the c l a s s i c a l  Van der Pol equation 

If 
s # 0, equation (1) i s  l inea r  and has a H, = Ms = 0 f o r  

If €&, = -H2 = -E and 

If a l l  the  damping terms vanish, leaving only a nonlinear res tor ing  moment, 
then the motion i s  per iodic .  If ,  i n  addition, t he  res tor ing  moment, t he  last 
term i n  equation (l), i s  a quint ic  or l e s s  i n  y,  then exact solut ions may be 
found i n  terms of e l l i p t i c  functions f o r  symmetric o sc i l l a t ions .  

Equivalent Pa i r  of Equations 

It i s  convenient t o  seek a transformation that  w i l l  express equation (1) 
i n  such a form that the first der ivat ive of t h e  dependent var iable  does not 
appear. 

Let us  introduce two functions u ( t )  and z ( t )  so that 

Since we have introduced two functions t o  replace one, we have an a r b i t r a r y  
condition a t  our disposal.  We w i l l  s e l ec t  u ( t )  so t h a t  the  d i f f e r e n t i a l  
equation f o r  z ( t )  does not e x p l i c i t l y  involve i t s  f i r s t  der ivat ive.  

If the  transformation given by equation (3)  i s  subst i tuted i n t o  
equation (1), then 

It does not suf f ice  t o  s e t  t he  coef f ic ien t  of i n  equation (4) equal t o  
zero i n  order t o  specify the  needed equation fo r  If t h i s  were done, a 
term involving dz/dt would appear i n  the coeff ic ient  of z owing t o  the  

dz/dt  
u. 

5 



presence of d%/dt2. The form of the  coeff ic ient  of dz/dt, however, suggest's 
t h e  following r e l a t i o n  for  u: 

Here the  as a re  constants t o  be determined so  t h a t  the  d z / d t  terms vanish 
i n  equation ( 4 ) .  

Taking t h e  der ivat ive of equation ( 5 )  t o  determine d2u/dt2 and subs t i t u t -  
ing i n t o  equation (4 )  , w e  f i n d  

We now eliminate the  derivative 
coeff ic ient  vanish. 

dz /d t  from equation (6) by requir ing that i t s  
This can be done term by term i f  

2 a, = - 2 + s  

Hence, 

Equations (7) and (8) a re  the  ones we have sought. These equations 
together  with equation ( 3 )  replace the  s ingle  equation (1) f o r  
simultaneous equations i n  the  new variables  u and z. 
solut ion of  t he  two simultaneous equations f o r  
cated t h a n  t he  single equation fo r  y. 
t i o n s  become uncoupled for  special  values of 
may then be found. 
s ingle  in tegra l  equation f o r  y and a single f i r s t -o rde r  equation f o r  y t h a t  
are appropriate fo r  es tabl ishing approximate solut ions.  

y by two 
It may appear that t h e  

We w i l l  f ind ,  however, that the  equa- 

Moreover, transformations of these equations w i l l  y ie ld  a 

u and z would be more compli- 

Ms and Hs, and exact solut ions 

To see more c l ea r ly  the  nature of equations (7) and (81, l e t  us wri te  
them i n  a s l i g h t l y  d i f fe ren t  form. 
gives 

Subst i tut ing equation (8) i n t o  equation (7)  

6 



presence of d%/dt2. The form of the  coef f ic ien t  of d z / d t ,  however, suggest's 
t he  following r e l a t i o n  f o r  u: 

Here t h e  as a r e  constants t o  be determined so t h a t  t he  dz /d t  terms vanish 
i n  equation ( 4 ) .  

Taking t h e  der iva t ive  of equation ( 5 )  t o  determine d2u/dt2 and subs t i t u t -  
ing i n t o  equation (4), we f i n d  

(6) 

We now eliminate t h e  der iva t ive  
coeff ic ient  vanish. 

dz/dt from equation (6) by requiring that i t s  
This can be done t e r m  by t e r m  i f  

2 as = - 2 + s  

Hence, 

+ I  C ( M s  + - H~ - 1 -)u du s z s 
d t 2  2 + s u d t  

1 du 1 Hs s s  
2 + s u z  

- - = -  
u d t  

z = o  

s>o - 
Equations (7) and (8) a r e  the  ones we have sought. These equations 

together w i t h  equation (3) replace the  s ing le  equation (1) f o r  
simultaneous equations i n  t h e  new variables 
so lu t ion  of t h e  two simultaneous equations f o r  
cated t h a n  t h e  s ing le  equation f o r  
t i o n s  become uncoupled f o r  spec ia l  values of 
may then be found. 
s ing le  i n t e g r a l  equation f o r  y and a s ing le  f i r s t - o r d e r  equation f o r  y t h a t  
a r e  appropriate f o r  es tab l i sh ing  approximate so lu t ions .  

y by two 
u and z .  It may appear that t h e  

We w i l l  f ind ,  however, that t h e  equa- 

Moreover, transformations of these equations w i l l  y i e l d  a 

u and z would be more compli- 
y. 

Ms and Hs, and exact so lu t ions  

To see more c l ea r ly  t h e  nature of equations (7) and ( 8 ) ,  l e t  us wr i t e  
them i n  a s l i g h t l y  d i f f e r e n t  form. 
gives 

Subs t i t u t ing  equation (8) i n t o  equation (7)  

b 



z = o  ( 9 )  

- 
Equation ( 9 )  may be simplified by introducing new parameters, Hs7 defined by 

The square of the  series i n  equation (10) may be arranged so t h a t  
i den t i f i ed  as 

Rs may be 

- %Hs-m 
Hs E f (2 + m)(2 + s - m) 

Equation ( 9 )  becomes 

With equation (7) writ ten i n  t h i s  form, special  exact solut ions suggest 
themselve s . 

Special Exact Solutions 

It can be seen that when 
- 

Ms = Hs, s f 0 

equation (12) reduces t o  

,& -+ - = 0 
dt2 

which has the general  solution 

Z = COS 7 

where 

7 



and to i s  a n  a r b i t r a r y  constant. The other  a r b i t r a r y  constant which would + 

normally appear has been suppressed since it w i l l  appear i n  t h e  so lu t ion  of t h e  
equation for  u ( t ) ,  equation (8) 

Consider now a two-term damping moment given by 

Here we have kept t h e  l i n e a r  t e r m  and one nonlinear term of a r b i t r a r y  
power n,  where n i s  an in teger .  With t h i s  damping moment, equation (8) 
takes  t h e  form 

Ho 

L d u = - E Q - -  Htl unzn 
u d t  2 2 + n  

A solut ion t o  equation (17) may be found by introducing the  transformation 

so that 

which has t h e  so lu t ion  

-Hot  
v ' = P e  

n -1- - 
2 d P  2Hn e - n H  0 t zn - -  - - -  

d t  2 + n  
P 

where A is a constant of in tegra t ion .  

From equations (10) and (13) we f i n d  t h a t  f o r  t h i s  spec ia l  case t h e  only 
nonzero values of Ms and Bs a r e  given by 

7 

Final ly ,  by combining the  solut ions f o r  u ( t )  and z ( t ) ,  we  f i n d  t h a t  t h e  
function y ( t )  can be expressed as a function of T = v ( t  - to) by 

8 



HOT - -  
e 2v C O S  7 

Y ( t >  = 
n HOT' [L + a n  j" e- 5 7 cos n T t  

yon (2 + n)v o 

where yo = y ( t  = t o )  and to are a rb i t r a ry  constants, and y ( t )  i s  a general  
solut ion t o  t h e  following equation: 

2 = 0 (23) 
Hn2  

(2  + n) 

where n i s  an integer .  

Solution (22) t o  equation (23) w a s  first given by Snith (ref. lo), 
although by an e n t i r e l y  d i f f e ren t  derivation. 
exact so lu t ion  as a basis of an approximate solut ion that does not r e s t r i c t  
t he  nonlinear res tor ing  t e r m s  

Subsequently, we shall use t h i s  

% and MZn t o  t he  values given by equation (21). 

It i s  in t e re s t ing  t o  see the exp l i c i t  forms that solut ion (22) takes  f o r  
spec i f ic  values of n. H e r e  we present the solut ions f o r  n = 2 and n = 4, 
which are most l i k e l y  t o  be of p r a c t i c a l  i n t e r e s t .  

n = 2: 

Y =  

[I - s i n  ~p sin(2-r - ~ p ) ]  ii HOT - -  b - s e  4% V 

H02 v2 = Mo - T = V ( t  - to) 

HO s i n  Cp = - 
*& 

n = 4: 

1 J 

(25) 

HO , s i n  Cp = - Ho s i n  $ = Jq m 
9 



where B i s  a constant. Formulas (24) and (25) are useful because they indi-, 
cate  exp l i c i t l y  and ana ly t ica l ly  how the  motion may be affected by a r b i t r a r i l y  
large damping nonl inear i t ies  . 

The spec ia l  exact solut ion (22) has the  shortcoming that the  nonlinear 
static-moment terms 
damping-moment terms Ho and Hn as given by equation (21). We would l i k e  t o  
l i f t  t h i s  r e s t r i c t i o n  and f ind  approximate solut ions f o r  a r b i t r a r y  values of 
%. To do t h i s ,  w e  must take i n t o  account t h a t  the  frequency may be var iable  
and recast  the  equations i n t o  more appropriate forms. 

M, are not open constants, bu t  a r e  determined by t h e  

I 

Equivalent In t eg ra l  Equation 
I 

The two simultaneous equations that we s h a l l  deal with are (12) and (8), 
which we rewrite here as 

- -. - 
where Ms = Ms - Hs. The parameters Ms may be viewed as the  "effective" 
static-moment parameters . 

We introduce a modified version of t he  Kryloff-Bogoliuboff technique, 
which i s  outlined i n  appendix A .  
having the  form 

Consider a nonlinear d i f f e r e n t i a l  equation 

- d2X + v2x + f6, $) = 0 
d t 2  

where f i s  an  a rb i t r a ry  function of x and dx/dt, and v2 i s  a pos i t ive  
quant i ty .  If w e  assume that equation ( 2 7 )  has a solut ion of t he  form 

then, as shown i n  appendix A, a ( T )  and T ( t )  are determined by 

1 - f ( a  cos T ,  - av  s i n  .r)sin T 
da V2 - =  
dT 1 + 7 1 f(a  cos T, - a v  s i n  T>cos 

a v  
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F 1 

The amplitude var iable ,  ay  i s  determined as a function of 
var iab ley  by solving equation (28b) . 
then f i n d  t h e  re la t ionship  between 
t 

T, the  frequency 
Using this  solution, a = a ( T ) ,  one may 

and  the o r ig ina l  independent var iable  T 
by solving equation ( 2 8 ~ )  i n  the  form of a quadrature 

t - to = $  dT' 

1+ -  COS 7' 
av2 

Consider now the  appl icat ion of the  modified fiyloff-Bogoliuboff equations 
t o  our p a r t i c u l a r  problem. 
shall s e l e c t  spec ia l  =Lues for t he  a rb i t r a ry  parameter v2. If & # 0, then 
we shall choose v2 = /%I. If = 0,  then we shall choose v2 = I&jmnI , 
where ym i s  a suitable cha rac t e r i s t i c  amplitude of t he  motion. Noting that 
z = a cos T~ we may iden t i fy  the  f'unction f ( a  cos T, -av s i n  T) from equa- 
t i o n  (26a) as follows: 

To account f o r  o sc i l l a t ions  fo r  which & 5 0, we 

Expression (29), i n  t h i s  case, i s  not i n  convenient form t o  solve equa- 

by combining equations (26b) and ( 2 8 ~ )  t o  eliminate 
t i o n  (28b) because the  var iable  u i s  present,  and u m u s t  be found as a 
funct ion of 
the  var iable  t. 
introduce a new variable, Q, defined as follows: 

a(T) and T 

Because t h i s  step cannot be eas i ly  accomplished, w e  instead 

HOT - 
(3%) V Q - a 2 u 2 e  

It now can be establ ished t h a t  y i s  determined as a function of T by 

HOT - -  
y2(7) = Q(-r)e ' cos2 T 

An equation f o r  Q(T) now remains t o  be found. From equation (3Oa) it 
follows that 

Subst i tut ing equations (26b), (28b) ,  and ( 2 8 ~ )  i n t o  equation ( ~ O C ) ,  we obtain 



S-E SH T - -0 -''I & Q 2  e I 

v 2 + s  
s> 1 - - 1 dQ - - -  

Q2 d r  n 1 1 + -  COS T 
a v 2  

This equation i s  the  more general  counterpart of equation (19). The appropri- 
ate expression f o r  f i n  terms of Q and T i s  found from equation (29) t o  be 

/ SH,T 

Thus, when equation (31b) i s  used f o r  f 
l i nea r  equation fo r  Q(T)  r e s u l t s .  

i n  equation (31a), a f i r s t - o r d e r  non- 

It i s ,  i n  general, too  d i f f i c u l t  t o  i n t eg ra t e  equation (3la) f o r  
Q = Q ( T ) .  
i n t e g r a l  equation f o r  
We f i rs t  n o t e  t h a t  f can be expressed i n  terms of y2 by using 
equation (30b) : 

Nevertheless, it i s  convenient t o  go a s tep fu r the r  and f i n d  an 
y t h a t  w i l l  serve as a b a s i s  f o r  approximate so lu t ions .  

or 

Equation (31a) may now be expressed as 

12 



where 

HO R ( T )  = y COS* T + 2 s i n  T cos3 7 

Direct in tegra t ion  of equation (33) gives 

(34) 

Subst i tut ion of equation (35) i n t o  equation (3Ob) now yie lds  an in t eg ra l  equa- 
t i o n  for ~ ( 7 ) :  

HOT - -  
C O S 2  7 

V e Y2 = 

Here we have iden t i f i ed  the  constant of integrat ion B as l/yo2, where 
yo = y(T = 0 ) .  

I 
~ 

If it i s  assumed that 
corresponding r e l a t i o n  fo r  

y = Y(T) can be found, then, at  least formally, the 
t ( 7 )  can be determined from equation (28d): 

t - t o = T  1 (37) 

The i n t e g r a l  equation (36) i s  in te res t ing  because it r e f l e c t s  roughly the  
nature of a solut ion t h a t  one might expect for a nonlinear o sc i l l a t ion .  i 



- - 
F'urthermore, when 
exact solution (22) for  
thus be useful f o r  a per turbat ion of t h i s  exact solut ion.  

v2 = M, > 0 ,  Ms = 0 fo r  s > - 1, and Hs = 0 f o r  s # 0,2, the' 
n = 2 i s  recovered immediately. Equation (36) w i l l  

Equivalent F i r  s t - O r  de r Equation 

We sha l l  now derive the  most useful and most important equation of t h i s  
analysis .  Since y = uz, t he  f i rs t  der ivat ive of y can be wr i t ten  i n  terms 
of u and z as 

We now again introduce the modified Kryloff-Bogoliuboff equations, derived i n  
appendix A, so that z = a cos T and dz /d t  = - a v  s i n  T. I n  addi t ion,  w e  make 
use of equations (26b), ( 2 8 ~ ) ,  and (32b), and write equation (38) as follows: 

HS -y t a n  + 1. - ( V 2 + :  - 
3 

sin2 T + cos2 T 

(39) 

The general second-order d i f f e r e n t i a l  equation (1) with t as t h e  inde- 
pendent variable has now been reduced t o  a s ingle  f i r s t -order  equation with T 

as the  independent var iable .  The r e l a t i o n  between t and T i s  again provided 
by equation (37). 
t i o n  (36) because it describes the  same nonlinear o sc i l l a t ion ,  it has a very 
d i f f e ren t  appearance. 

Although equation (39) i s  equivalent t o  the  i n t e g r a l  equa- 

Distor t ion Due t o  Nonlinear Damping 

Equation (39) can immediately be used t o  determine where t h e  maximum 
amplitudes occur i n  a nonlinear o sc i l l a t ion .  
osc i l la t ion ,  t h e  motion i s  per iodic ,  and it i s  easy t o  deduce t h a t  t he  maximum 
amplitudes occur a t  T~ = nay where n i s  an integer .  For a general  o sc i l l a -  
t ion ,  t he  maximum amplitude occurs when 
t i o n  (39) we  deduce that 

When there  i s  no damping i n  an 

dy/d-r vanishes, and thus  from equa- 

where ym = Y ( T ~ )  i s  the  maximum amplitude. 



Formula (40) ind ica tes  how much the maximum amplitude i s  sh i f ted  from the  

Ho < 0 ,  
poin t  of symmetry, T~ = nn. 
l i m i t  cycle f o r  t he  exact solut ion (24). 
H2 > 0, and T + 

Consider a special  s ixple  example, namely, the  
The l i m i t  cycle occurs when 

and, i n  t h i s  case, equation (24) y ie lds  

where 

HO sin Cp = - 
2& 

or  

H, t a n  Cp = - 
2v 

The value of ym from equation (41) i s  

and equation (40) now y ie lds  f o r  t h i s  example 

HO H2 
2v  2b 

t a n  Tm = - - (1 + - ym2) = t a n  

Hence , 
T~ = nn + 

191 = E  ~ 4 5 0  
I : 4  

Y p, -I and the  l i m i t  motion i s  d i s to r t ed  from 
the symmetry os i t i on  by an amount 
Cp = tan- l (HoEv).  This motion i s  shown 
i n  f igure  1 f o r  values of cp = 00, 
-15O, -45O, and -75O. When I C p I  i s  
large,  a subs tan t ia l  d i s t o r t i o n  of t he  
nearly cosine osc i l l a t ion  character is-  

- t i c  of small nonl inear i t ies  i s  found, 
and the  o s c i l l a t i o n  i s  no longer sym- 
metric about T~ = nn. 

n r - z  nn nT+$ 

Figure 1.- Dis tor t ion  of motion due t o  
nonlinear damping.  



EXACT SOLUTIONS FOR ZERO DAMPING 

It i s  i n t e re s t ing  and in s t ruc t ive  t o  see how exact so lu t ions  f o r  zero 
damping appear i n  t h e  present formulation of nonlinear o s c i l l a t i o n s .  Moreover, 
these exact so lu t ions  w i l l  be useful later i n  approximations f o r  nonzero 
damping 

General Solution 

L e t  us now consider only symmetric motions, so that s i s  even, and a l l  
the  damping terms a r e  zero (Hs 
maximum amplitude that we denote by ymo We introduce a normalized form of y 
by the  transformation 

0)- The motion w i l l  be per iodic  and have a 

I n  a d d i t i o n ,  we introduce t h e  coe f f i c i en t s  ms defined by: 

S - 
, s > o  - MsYm ms - - - 

V 2  

Note that if 
t e r m  of the s t a t i c  moment t o  t h e  magnitude of t h e  l i n e a r  term. With t h i s  nota- 
t i o n ,  one m y  express equation (39) f o r  zero damping as follows: 

Mo # 0, ms i s  a r a t i o  of t h e  magnitude of t h e  s t h  nonlinear 

s i 2  
sin2 7 + cos2 TJ-’ msYo 

(43) 

I L J  

s>o - 
Equation (43) can be immediately integrated i f  a transformation t o  a new 

independent var iab le  x = t a n  T i s  made. If t h e  boundary condition i s  imposed 
that Yo = 1 when T = nn (n  i s  an i n t e g e r ) ,  then 

tan2 T = Yo 2 + s  

s>o 

(44)  

The zero-damping so lu t ion  becomes complete when a re la t ionship  between T 

and t i s  es tab l i shed .  This i s  done by means of equation (37),  which now 
becomes 
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t - t o = -  dT' 
V 

SI2 J, sin2 7' + cos2 1 msYo 

Formula (45) i s  not always a convenient expression t o  use because 
e r a l l y  an  impl ic i t  function of 
which t i s  determined as a function of Yo i s  of ten  more useful .  The alter- 
nate  formula may be found by changing var iables  according t o  equations (43) and 
(44), and thus  obtaining 

Yo i s  gen- 
T. Consequently, an a l t e r n a t e  expression i n  

t -  

f o r  

tn, = 1 2v 
- 

- < n n + E  2 and O < Y o < l  - 

Expression (463) has been obtained by more conventional methods. If 
m, = 0 when 
(see refs. 11 azd 12) .  The angular frequency W of t h e  o s c i l l a t i o n  i s  defined 

s > 6, then equation (46a) can be evaluated by e l l i p t i c  i n t e g r a l s  

by 
1 

(46b 1 v 1  - - -  

An approximate formula f o r  the frequency with a r b i t r a r y  values of 
derived i n  reference 13. ms has been 

Special  Case of a Cubic S t a t i c  Moment 

For t h e  case of a l inear-plus-cubic moment, m, = 0 when s 3 4, it i s  
easy t o  f i n d  an e x p l i c i t  function f o r  Y~(T) from equation (44); namely, 

17 



(47)' (cl/m2)cos2 T Yo = 
2 

sin2 T + mo cos2 T + (s in2 + mo cos2 7) + p cos4 

(49) 1 

where I-L = m2(% + m2). 

With t h i s  e x p l i c i t  representation, equation (37) y ie lds  t h e  following 
r e l a t i o n  between T and t 

I 

d T '  ( 4 8 4  
(sin' T' + mo cos2 7') 2 + LL cos4 T '  

- to = "1 .J 
It follows that the  frequency i s  given by 

d7 (4b 1 
T + mo cos2 T) 2 + p COS* T 

It i s  i n t e re s t ing  t o  compare equation (48b) f o r  t he  frequency w i t h  the 
corresponding formula (46b), which may be evaluated i n  terms of e l l i p t i c  i n t e -  
g ra l s .  The quadrature (48b) i s  a proper i n t e g r a l  and may be evaluated 
numerically without d i f f i c u l t y .  

Formulas (48) contain four possible  cases of i n t e r e s t ,  depending on the  
value of the moment terms 
convention. If % i s  pos i t ive ,  it i s  ca l led  s table;  i f  it i s  negative, it 
i s  called unstable.  
term Fb and then M 2 .  For a cubic s t a t i c  moment w e  thus have the  following 
cases :2  

& and R2. To discuss them, we adopt t h e  following 

The various p o s s i b i l i t i e s  a r e  s t a t ed  by describing the  - 

Stable-stable and stable-unstable s t a t i c  moment 

- 0 < m2 < 03 ( s tab le-s tab le)  M, > 0, v2 = llo, mo = 1 -1 < m2 < 0 (stable-unstable) 

Unstable - stab l e  st a t  i c  moment - 
M, < 0 ,  v2 = mo = -1 2 < m 2 < w  

Pure cubic s t a t i c  moment 

M, = 0 ,  v2 = M2ym > 0, mo = 0, m2 = 1 
2 - 

1 
J 

I 
2Note that if m2 < -1 f o r  the  stable-unstable case, tumbling motion 

r e su l t s ;  also,  i f  1 <  m2 < 2 for  the  unstable-stable case, unsymmetric 
motion about a trim angle occurs. 
t he  present analysis ,  i n i t i a l  conditions must be such t h a t  the r e s t r i c t i o n s  on 
m2 a r e  .observed. 

Since nei ther  of these cases i s  covered i n  , 
, 

18 



The o s c i l l a t i o n s  (eq. (47)) fo r  t he  cubic moments a re  p lo t ted  i n  f igures  2(a) ,  
-(b), and (e )  t o  show the  e f f e c t  of 
ures ,  
over a quarter  cycle of o sc i l l a t ion .  
r a t i o  of t he  magnitude of t h e  nonlinear par t  of t h e  s t a t i c  moment t o  the  magni- 
tude of t h e  l i n e a r  p a r t .  
m2 = m i s  p lo t ted  versus the  orig- 
i n a l  independent var iable ,  t, normalized i n  such a way that the curves have the  
same frequency. 
d i f f e ren t  l i n e a r  moment, i n  each case the linear moment being chosen t o  give 
t h e  same frequency of o s c i l l a t i o n  as did the  pa r t i cu la r  nonlinear moment. 

m 2  for  t he  various cases. In these f ig -  

i s  a 
= y/ym i s  p lo t t ed  versus the  transformed independent var iable ,  T ,  

A s  indicated by equation (42), m2 

The value m2 = 0 represents  t h e  pure l i nea r  case, 
t he  pure cubic case. I n  f igure  2 ( d ) ,  y/ym 

This i s  equivalent t o  comparing each nonlinear moment with a 

With 

(a)  Variation with T ;  s tab le-s tab le  1-3 
s t a t i c  moment. 

(c)  Variation w i t h  T; unstable-stable 1-3 
s t a t i c  moment. 

(b) Variation with T ;  stable-unstable 1- 
s t a t i c  moment. 

0 1 %  
T 

( d )  Variation with t . 
Figure '2.- Effect of m2 on osc i l l a to ry  

behavior. 



t h i s  kind of  p l o t ,  it can be seen t h a t  most non l inea r i t i e s  i n  t h e  moment have 
no d r a s t i c  e f f e c t  on the  appearance of t h e  motion (although t h e  frequency i s  
g rea t ly  a f fec ted)  
shaded region of f igure  2(d)  
unstable cases ever encountered would be bracketed by t h e  curves labe led  0.0 
and -0.8; most unstable-stable cases would be bracketed by t h e  curves labeled 
2.5 and m. 

. 
For instance,  &l s tab le-s tab le  cases  would f a l l  wi th in  t h e  

Furthermore, t h e  vas t  majority of s tab le-  

1 + ys V 
s>2 - 

APPROXIMATE SOLUTIONS 

<< 1 

We now wish t o  f ind  solut ions f o r  a r b i t r a r y  values of Hs and Ms. With 
t h e  use of t h e  spec ia l  exact so lu t ions  already discussed, it i s  poss ib le  t o  
f ind  approximate solut ions va l id  when the  parameters 
a c e r t a i n  sense. Essent ia l ly ,  we s h a l l  f i n d  f i r s t - o r d e r  per turba t ion  solu- 
t i o n s  t o  t h e  exact so lu t ions  t h a t  a r e  spec ia l  cases of equations ( 3 6 )  and ( 3 9 ) .  
We s h a l l  - consider only symmetric motion and hence make t h e  r e s t r i c t i o n  
H, = Ms = 0 when s i s  odd. 

Hs and Rs a r e  small i n  

4% Ys-2 1 (2 + s)H2 
s>4 - 

Perturbation Solution Using t h e  In t eg ra l  Equation 

<< 1 

Because the  i n t e g r a l  equation ( 3 6 )  has an exact so lu t ion  f o r  a spec ia l  
case, t h a t  i s ,  when & > 0 and Rs = 0, s > 0, and when Hs = 0, s > 4,  it i s  
natural t o  ask i f  there  e x i s t s  a small perturbation of t h i s  exact  so lu t ion  i n  
which ce r t a in  parameters are smal l  i n  a n  appropriate sense. The exact  solu- 
t i o n  can be expressed i n  t h e  form of equation (22) ,  with n = 2, 

Expression ( 5 0 )  can be considered as a zeroth order approximation. Since equa- 

and determine a f i r s t - o r d e r  approximation t o  equation ( 3 6 )  as a f i rs t  s tep i n  a 
scheme of successive approximations. 

t i o n  ( 3 6 )  is  a n  i n t e g r a l  equation, it i s  straightforward t o  use equation ( 5 0 )  I 

1 
1 Consistent with the  zeroth approximation, w e  require  that % > 0, and 

t h a t  

and 
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.With these conditions,  we can expand the  denominator of t he  integrand of the  
i n t e g r a l  i n  equation (36) i n  a Taylor s e r i e s  and keep the  f i rs t  t e r m .  
f i r s t - o r d e r  approximation can now be obtained by replacing t h e  
appears under the  in t eg ra l  by the  zeroth-order approximation 
ing terms consis tent  with equations (51). 
can be wr i t t en  as 

The 
y2 that 

y2 and re ta in-  
( 0 )  

The f i r s t -o rde r  approximation thus 

Formula (52) f o r  the  f i rs t  a p p r o x a t i o n  i s  expressed i n  t e r m s  of quadra- 
tures involving the  zeroth-order approximation. I n  general ,  these quadratures 
a r e  d i f f i c u l t  t o  evaluate i n  terms of tabulated functions.  For the  spec ia l  
case when t h e  nonlinear damping terms are zero, however, the  quadratures can be 
evaluated with the  use of elementary functions. We now write the  corresponding 
formal solut ion f o r  t he  frequency function T as a function of t. Star t ing  
with equation (37) and using the  approximations consis tent  with the  first- 
order solut ion,  we obtain 

vhere , as before , ~ 7 ~ )  i s  given by equation (50). 
of as a r e  neglected i n  the  first approximation, we can a l s o  express T 

e x p l i c i t l y  i n  terms of t 

Since higher order products 

by rearranging equation (53a) t o  read 

b I n  many p r a c t i c a l  problems of i n t e re s t  i n  aerodynamics, t he  nonlinear 
restoring-moment terms a re  not small, and thus the  above f i r s t -o rde r  approxima- 
t i o n s  a r e  not pa r t i cu la r ly  useful.  
consequently, r e s u l t s  having wide appl icat ion can be obtained from a perturba- 
t i o n  solut ion of the  f i r s t -o rde r  d i f f e r e n t i a l  equation (39). 

I 

~ 

The damping, however, i s  usual ly  small; 
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Perturbation Solution Using the  First-Order 
Di f fe ren t ia l  Equation 

kt us write equation ( 3 9 )  i n  a normalized form that na tura l ly  suggests a 
per turbat ion procedure. We introduce a cha rac t e r i s t i c  amplitude ya that we 
shall ident i fy  later and define t h e  following symbols: 

I (54) 

- 
Since M, M,, ms i s  e s sen t i a l ly  a r a t i o  of t h e  magnitude of t he  s t h  non- 
l i nea r  term of t he  s t a t i c  moment t o  the  magnitude of t h e  l i nea r  term; hs 
similar r a t i o  for t he  damping moment but  multiplied by a constant, 1 / (2  + s ) .  
With t h i s  notation, equation ( 3 9 )  becomes 

i s  a 

s in2 + cos2 1 m s Y s l *  
s>o - 

( 5 5 )  

Since an exact solut ion e x i s t s  f o r  equation (55) when h 0 ,  namely, 
equation (44),  we seek a per turbat ion solut ion of equation (55) va l id  when 
h << 1. 
half  cycle, a t  l e a s t ,  t h a t  
form: 

Therefore, we consider that h << 1 and hs = O(1) and assume over a 
Y ( T )  can be expanded i n  a se r i e s  of t he  following 

Substi tuting equation ( 5 6 )  i n t o  (55), col lect ing terms, and requiring t h a t  t he  
coeff ic ient  of each power of h vanish iden t i ca l ly  y ie lds  an i n f i n i t e  set of 
equations f o r  t he  functions Ym. We shall confine our i n t e r e s t  t o  t h e  f irst-  
order perturbation and thus t o  only the  functions Yo and Y,. 
f o r  Yo and Y, are found t o  be 

The equations 

dY0 2Y0 t an  T - = -  
d T  DO 
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( 5 % )  

where 

S I 2  I> sin2 7 + cos2 7 1 msYo 
0 (574 

With the  use of equations (57a) and (57c) 
an in tegra t ing  fac tor  f o r  equation (5n) is merely 
t i o n  ( 5 % )  can be expressed as 

it i s  not d i f f i c u l t  t o  ver i fy  t h a t  
sec2 T ,  so t h a t  equa- 

-(D~ d s e c 2 - r ~ ~ )  = -2 sec27Yo 1 hsY:'" (58)  d7 
e o  

With t h e  above equations w e  w i l l  be in te res ted  in t he  solut ion between two 
nth consecutive maximum amplitudes, say the maximum amplitude, yny and the 

(n+i)th,  yn+i* The zeroth order equation (57a) y ie lds  a per iodic  solut ion 
with a given maximum amplitude. W e  now se lec t  ya so that the  maximum ampli- 
tude squared of t h e  
nth and (n+i ) th  maximum amplitudes 

zeroth order solution i s  the  mean of the  squares of t h e  

k Sketch (a) 

We can now take equation (44) t o  be the  
solution of (57a) m d  ident i fy  
with ya. The s i tua t ion  i s  shown i n  
sketch (a). 

ym 

Correct within the  f i r s t -o rde r  
approximation, yn occurs at  T = nx 
and yn+l OCCUTS a t  7 = (n + 1)s. 
We in tegra te  equation (58)  so that 
Yl(nn) = -Y,(nn + n) 

sec 2 T '  Yo hsY:l2 d7' (59)  
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The function Y,(T)  i s  expressed by a quadrature. Since Y 0 ( 7 )  can be wri t ten.  
e x p l i c i t l y  a s  a function of T only f o r  spec ia l  cases, such as the  cubic 
res tor ing moment (eq. ( 4 7 ) ) ,  a general  e x p l i c i t  form f o r  t h e  integrand cannot 
be found. With a change i n  var iable ,  however, t h e  quadrature can be expressed 
i n  t h e  form of e l l i p t i c  or hypere l l i p t i c  i n t eg ra l s .  

Consider a change of var iable  i n  t h e  i n t e g r a l  of equation (59) t o  Yo, as 
defined by equations (57a) and (44 ) .  Then, i n  terms of Yo, t he  function Y, 
can be wri t ten as 

where 

f o r  nn 5 T 5 (n  + 1)fl. The p lus  sign i s  used when 
and t h e  minus s ign when nfi 5 T 5 [n  + (1/2)]n. 

G(Yo) a re  odd functions of {T - [ n  + (1/2)]n]. 
r a d i c a l  of equation (60b) i s  a quar t ic  or  less, then t h e  i n t e g r a l  can be eval- 
uated i n  terms of e l l i p t i c  i n t eg ra l s  and e l l i p t i c  funct ions.  We s h a l l  eval- 
uate  e x p l i c i t l y  the  complete i n t e g r a l  l a t e r  f o r  spec ia l  cases of t h e  damping 
decrement. 

[n  + (l/2)]n 5 T 5 ( n + l ) n  
It i s  c l ea r  t h a t  

When t h e  polynomial i n  t h e  

Y1(7) and 

The corresponding f i r s t - o r d e r  form of the  frequency equation (37) can now 
Inser t ing  equation (56) i n t o  (37) and keeping only f i r s t - o r d e r  be  determined. 

terms i n  h y ie lds  



. where here t = to when -r = [n + (1/2)]X. This completes the  formal f i r s t -  
order solution. Because the  f i r s t -o rde r  in tegra l  i n  equation (61) i s  very com- 
p l i ca t ed ,  we shall not invest igate  it fur ther  here, but  merely note that it can 
be integrated numerically without great  d i f f i cu l ty  when 
functions of T.  

Yo and Yl are  known 

THE RAMPING DECREMENT 

We now wish t o  derive formulas t h a t  portray the  distinguishing fea tures  of 
the nonlinear o sc i l l a t ion .  O f  an  osc i l l a t ion  that i s  su f f i c i en t ly  well-defined, 
two dis t inguishing fea tures  a r e  the  maximum amplitudes and the  half period. 
(By half period, we mean the  time in t e rva l  between two successive maximum ampli- 
tudes of t h e  motion. In  t h i s  sense, it i s  a pseudo-period, since the  motion i s  
not necessar i ly  per iodic .  Given the half period, we can likewise define a n  
angular frequency.) A per t inent  parameter t o  consider i s  the  r a t i o  of two suc- 
cessive maximum amplitudes, ca l led  the  damping decrement. A s l i g h t l y  more s ig-  
n i f i can t  parameter i s  the  logarithmic decrement because it i s  a constant fo r  a 
s t r i c t l y  l i nea r  o s c i l l a t i o n  and thus forms a good standard f o r  comparison. 

Decrement f o r  Small Damping 

Consider now the  f i r s t -o rde r  solut ion that neglects terms of order h2 i n  
equation ( 5 6 ) ;  that is ,  

Y(T) = Y0(7)  + hY1(T) + O(h2) ( 6 2 4  

From t h i s  expression we f ind  yn and yn+l t o  be given by  

@r = 1 + hYl(nn) I O(h2) 

(yy = 1 + hYl(nn + fi) + O(h2) 

Noting t h a t  
expanding f o r  small 

Y,(nn) = -Y,(nn + R),  dividing one equation by the  other,  and 
h, we f ind  the damping decrement t o  be 

($J2 = 1 - 2hYl(nII + 11) + O(h2) 

Taking the  logarithm of this expression and again expanding f o r  small 
y ie lds  the  following formula f o r  the  logarithmic decrement: 

h 

-hYl(nn + a) + O(h2) 



Here 
however, it i s  convenient t o  modify equation (64) by defining an e f f ec t ive  
l i n e a r  damping. 

Y,(nn: + n) can be evaluated by equation (59) or  (60) .  Before proceeding, 

Effective Linear Damping 

I n  a s t r i c t l y  l i nea r  o sc i l l a t ion  it i s  known t h a t  t he  logarithmic decre- 
ment i s  a constant with t h e  value 

where v i s  the  frequency defined by v2 = 1% 
an ef fec t ive  l i nea r  damping Hoe by 

where now, consistent with the  f i r s t -o rde r  anal; 
(A by 

or  

3 . Analogously, we can define 

v Hoe 
(A Ho 
- -  

sis,  we define the  frequency 

J t l X  

1 
dY, 

J” s>o z 

syo 

- yy) 
%he logarithmic decrement can be wr i t ten  i n  more conventional form i f  w e  

introduce t h e  so-called damping r a t i o  6 as 6 = Ho/2Mo. Then, rea l iz ing  that 

v = & = ,/- f o r  a l i nea r  o sc i l l a to r ,  we  have 

For a l inear  system, t h e  logarithmic decrement i s  independent of amplitude, 
and, therefore,  we can a l s o  w r i t e  
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W e  now combine equations (64) and (66) t o  get  

- %e = - 2 Y,(nx + a) + O(h) 
R V  HO 

Expression (68) i s  an important formula, and we shall invest igate  it i n  some 
d e t a i l .  

General Formula f o r  Effective Linear Danrping 

The formal f i r s t -o rde r  value f o r  t h e  e f f ec t ive  l i nea r  damping can 
(noting that found by evaluating Yl(nn + a) 

Yo(nx + n) = 1) 
i n  formula (68) by (60) 

2 + s  

be 

where W / V  is  given by equation (67b). Formula (69) can be e x p l i c i t l y  evalu- 
a ted  i n  t e r m s  of tabulated f’unctions f o r  r e s t r i c t e d  combinations of 
shall invest igate  these special  solutions i n  order t o  gain an appreciation f o r  
the influence of t he  nonl inear i t ies  on the damping, and t o  ascer ta in  the asymp- 
t o t i c  values of the general  formula i n  various limits. On t he  b a s i s  of this 
information, an approximate, but qui te  general, formula can be establ ished 
t h a t  i s  va l id  f o r  almost the  whole range of possible values of the  nonlinear 
parameters 

ms. W e  

Cubic CeLmping and Cubic S t a t i c  Moment 

Formula (69) can be evaluated i n  terms of e l l i p t i c  i n t eg ra l s  f o r  a cubic 
s t a t i c  moment; that is, ms = 0 when 
a l s o  consider only a cubic damping moment; that is, Hs = 0 when 
t h i s  case, formula (69) appears as 

s > - 4. For the  sake of s implici ty ,  we 
s > - 4. For 

where 



Two representations a re  required f o r  t he  various s t a t i c  moments defined 
by equation (49) t o  express (70a) i n  t e r m s  of e l l i p t i c  in tegra ls .  
d i s t inc t ion  i s  needed f o r  t he  various cubic damping moments t h a t  could e x i s t . )  
These a re  as follows: 

(No such 

K = K(k) =L*l2 dq Complete e l l i p t i c  in tegra l  
Y of f i rs t  kind 

E = E(k) = [ J[12 JFTGql Complete e l l i p t i c  i n t eg ra l  
of second kind dcP J 

( 71c ) 

Stable-stable and unstable-stable s t a t i c  moment: (formula 236.16, r e f .  12) 

I _ -  - 
'1 - k2 [(k2 - l ) K  + E] 1 

2 1 m 2  k = -  2 mo + m2 J 
Stable-unstable s t a t i c  moment: (formula 234.16, ref.  12) 
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. 

Expression ( 7 b )  for  H~, /H,  i n  terms of e l l i p t i c  i n t eg ra l s  i s  ac tua l ly  

I limits. It i s  in t e re s t ing  that the e f fec t ive  l i nea r  damping can be expressed 
I by another set of quadratures that possibly may be eas i e r  t o  evaluate numeri- 

a f a i r l y  involved formula. 
d i f f i c u l t  t o  evaluate numerically because of t h e i r  singular nature a t  both 

Also, t he  quadratures given by equation (70) are 
I 

c a l l y  (espec ia l ly  with e lec t ronic  computers) than e i t h e r  equation (7Oa) or 
(71a). 
the Yo var iab les  t o  the  T variables  w i t h  the  use of equations (43),  (44), 
and (47) .  

We obtain t h i s  a l t e r n a t e  formula by transforming equation (70a) from 

The a l t e r n a t e  r e s u l t  i s  

1 Yl = (K - E) 

- -- - [(2+ k2)K - 2 ( 1  + k2)E] 72 3 4  

k2 = -m2 
2 + m2 

1 

J 

(73) 

An equivalent expression f o r  fo r  a cubic s t a t i c  moment, but a 
l i n e a r  damping moment, that i s ,  h2 = 0, has been given by Murphy (ref. 5 )  and 
Murphy and Hodes (ref. 6). 
He assumed t h a t  t he  damping w a s  small and then used the  exact e l l i p t i c  func- 
t i o n s  obtained f o r  zero damping i n  an averaging process over a cycle of motion. 
The per turbat ion method of Murphy thus y ie lds  t h e  same value f o r  the e f fec t ive  
damping as t h e  present ana lys i s  f o r  a cubic s t a t i c  moment, bu t  it i s  d i f f i c u l t  
t o  extend the  method of Murphy t o  higher order s t a t i c  moments owing t o  the  
complexities i n  representing more complicated static-moment solut ions by e l l i p -  
t i c  functions.  An approximate formula f o r  q e / H o  f o r  a cubic s t a t i c  moment 
and l i n e a r  damping has a l s o  been derived by Murphy ( r e f .  7) by a,, quasi-l inear" 
method, and we w i l l  discuss t h i s  later i n  the sect ion e n t i t l e d ,  Comparison f o r  
a Cubic Moment." 

Murphy obtained h i s  r e s u l t s  i n  a d i f f e ren t  manner. 

1, 

where 



and 

IJ. = m2(2m0 + ma) 

The above quadratures a re  proper in t eg ra l s  and can be evaluated numerically 
without d i f f i cu l ty .  
extended t o  higher order damping terms. 

It i s  worth mentioning t h a t  equation (74a) can e a s i l y  be 

There a r e  several  ways i n  which formulas (71a) and (74a) can be p lo t t ed .  

Such carpet p l o t s  are shown i n  f igures  3(a), (b)  , and ( c ) .  
If one i s  in te res ted  i n  knowing Hoe/Ho for  given values of h2 and m2, carpet  
p l o t s  a r e  useful .  
Because of t he  ease of making l i nea r  interpolat ions,  these p l o t s  are convenient 
t o  use. 

(a) Stable-stable 1-3 s t a t i c  moment. (b) Stable-unstable 1-3 s t a t i c  moment. 

(c)  Unstable-stable 1-3 s t a t i c  moment - 

Figure 3.- Carpet p l o t  of e f f e c t i v e  l i n e a r  
damping. 



Another method of p lo t t ing  i l l u s t r a t e s  how HO,/Ho varies with amplitude 
f o r  given values of the damping- and static-moment parameters. 
h e / H 0  as a function of m2 and se t  so that 

We thus p lo t  
h2 E (h2/m2)m2 

can be varied as a parameter t h a t  does not depend on amplitude f o r  a given 
osc i l l a to r .  
curves denoted by h2/m2 = 0 w e r e  given by Murphy and Hodes (ref. 6). The 

These p lo t s  are i l l u s t r a t e d  i n  figures 4(a), (b), and ( c ) .  The 

m2 m2 

(a) Stable-stable 1-3 s t a t i c  moment. (b) Stable-unstable 1-3 s t a t i c  moment. 

m2 

( c )  Unstable-stable 1-3 s t a t i c  moment. 

Figure 4.- Effect ive l inear damping versus m2. 



curves i n  figures 4(b) and ( c )  a r e  s ingular  f o r  t h e  stable-unstable moment a t  
m2 E M2yn2& = -1 and f o r  t h e  unstable-stable moment a t  R2yn2/lfi01 = 2. 
The dashed l i n e s  a r e  the  asymptotes f o r  m2 + 03- It i s  poss ib le  t o  show by an 
expansion f o r  la rge  m2 that the  asymptotes a r e  given by 

~ - 
m2 

where 

or 

f2) O asymp 
= (0.667 + 0.296 moh2) + 0.7311 (2) m2 (75) 

Likewise, f o r  t he  s table-s table  and stable-unstable moments, t he  va r i a t ion  as 
m2 + 0 i s  given by 

Another in te res t ing  aspect of these  curves i s  t h e  appearance of maxima and 
minima i n  some cases. If these curves were established by experiment, t h i s  
behavior might be considered perplexing without t h e o r e t i c a l  background. They 
por t ray  the e f f e c t s  of strong in te rac t ions  of t he  nonlinear damping and s t a t i c  
moments. hz/m2 = 5/4 
i n  f igure  4 ( b ) .  Detailed examination of equation (74) shows t h a t  t h i s  value 
i s  the  dividing point  between cases where a l i m i t  cycle can or cannot e x i s t ,  
given a stable-unstable s t a t i c  moment. For 
p o s s i b i l i t y  of a l i m i t  cycle. 

S t i l l  another i n t e re s t ing  fea ture  i s  the curve labeled 

h2/m2 < 5/4, t he re  i s  no 

A l l  curves shown i n  f igure  4 were compared with r e s u l t s  obtained from 
I n  these  numerical in tegra t ions ,  var- 

were chosen up t o  a value of 
This encompasses t h e  p r a c t i c a l  range of damping encountered i n  

numerical in tegra t ions  of equation (1) . 
ious values of t he  parameter 
about 0.1. 
ba l l i s t i c - r ange  t e s t i n g .  
t i o n s  agreed almost exactly with the  resu l t s  from formula (71a) or  (74a) shown 
i n  f igure  4 .  
shown. 

h E Ho/lMo11'2 

In  a l l  cases, t h e  r e s u l t s  of t h e  numerical integra-  

To the  scale  these curves a r e  p lo t t ed ,  no differences can be 

When Ho < 0, a l i m i t  cycle e x i s t s  when Hoe = 0. The amplitude of t h e  
l i m i t  cycle may be found by s e t t i n g  
Using equation (74a) we ge t  

Hoe = 0 i n  equation ("la) or (74a).  



. 

m2 

Figure 5.- Amplitude of l i m i t  cycle versus m2. 

An a l t e rna te  formula i s  obtained from 
equation (71a), which i s  equivalent t o  
the r e s u l t  found by Murphy and Hodes 
(ref .  6) by investigating the singu- 
lar nature of the l i m i t  cycle i n  an 
amplitude plane. The e f f ec t  of the 
cubic s t a t i c  moment on the amplitude 
of the l i m i t  cycle i s  demonstrated i n  
figure 5 .  
singular i t ies ,  the e f fec t  of m2 i s  
not large,  yielding a value of 
(-h2)2 = 0.9118 as 
t o  the well-known value 
when m2 -, 0. It w i l l  be shown l a t e r  
t h a t  f o r  quintic and higher order 
s t a t i c  moments, the  e f f ec t s  a r e  much 
greater .  

Except i n  the region of the  

m 2  -, 03 contra s t  e d 
(-h2)2 = 1 

Arbitrary One-Term S ta t i c  Moment 

The quadratures i n  equation (69) can be evaluated i n  terms of tabulated 
This functions f o r  the  special  case of an a rb i t ra ry  one-term s t a t i c  moment. 

case y ie lds  the  asymptotic values that are obtained as the highest order term 
i n  an a rb i t r a ry  polynomial s t a t i c  moment tends t o  large values. 

- 
We now consider Ms # 0 f o r  s = n, where n i s  an  even integer.  Hence n we choose v2 = Mnyn > 0 so that ms = 0, s # n, and mn = 1. Expression (69) 

now appears as 

- _ _ _  Hoe - 1 w ( - 2 )1/2 
Ho ‘ I [ v  2 + n  

’1 
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and 

dY 1 
v , (-)I' 

2 

i, 
. 

( 7 W  

, these quadratures can be wr i t t en  i n  the b + 2 ) / 2  With the  subs t i tu t ion  
form of beta  functions,  which i n  t u r n  can be evaluated i n  terms of gamma 
functions, I?. 

x = Yo 

For equation (78a), w e  thus  obtain 

where 

4(2 + s) 

2 s + 4 + n  
s, n 2 0 

Although formula (79) w a s  derived fo r  a one-term s t a t i c  moment, it a l s o  
represents t h e  asymptotic value of Hoe/Ho 
which the n th  t e r m ,  mn, i s  dominant and s tab le  and tends t o  i n f i n i t y .  For 
purely l inear  d ing it i s  in te res t ing  that the  asymptotic value i s  simply 
Hoe/Ho = 4/(n +?. On the  other hand, f o r  a l inea r  s t a t i c  moment, n = 0, 
equation (79a) can be wr i t ten  

for a polynomial s t a t i c  moment i n  

1 - 3 9  . . . ( S  - 1) 
204.6 . . . S 

hS 
- -  Hoe - 1 + 2  1 

s22 
HO 

Redd e t  a l .  (ref. 9 ) ,  considering only a l inea r  s t a t i c  moment, computed 
the  same value as equation (79c) up t o  
conclusion, however, t h a t  a nonlinear s t a t i c  moment does not s ign i f icant ly  
al ter t h e  formula (79c), except near unstable trim, i s  not substant ia ted by the  
present analysis .  
more general formula (79a), and each type of nonlinear s t a t i c  moment may 
indeed af fec t  Hoe/Ho s ign i f icant ly  . 

s = 8 by a d i f f e ren t  method. Their 

Here it i s  found that equation (79c) i s  a spec ia l  case of a 

Expression (79a) may be used t o  examine the e f f e c t s  of the nonlinear 
s t a t i c  moment on the  value of t he  l i m i t  amplitude. 
ing moment given by 
i s  l i n e a r  and the  second t e r m  i s  nonlinear of a r b i t r a r y  order.  The l i m i t  cycle 
occurs when 

Consider a two-term damp- 
H, = 0 when s # 0 or k (k even) so t h a t  the  f i rs t  t e r m  

Q < 0 and may be determined by se t t i ng  Hoe = 0 t o  obtain 
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The value of ( - $ ) 2  i s  a funct ion of both k and n, and some of t h e  
values O f  (-hk)l  are given i n  the following tab le :  

\ k  2 4 6 8 
0 
2 
4 
6 
0 
m 

1.OOO 1.333 1.600- 1.829 
.912 1.167 1.368 1.540 
.870 1.084 1.250 1.392 
.845 1.034 1.178 1.300 
.829 1.001 1.130 1.238 
750 -833 -875 .900 

It can be seen from t h i s  t a b l e  t h a t  t he  value of 
given value of k as n increases.  Here w e  r e c a l l  that n = 0 represents  a 
purely l i n e a r  s t a t i c  moment. 

(-&)I decreases f o r  a 

Expansion f o r  Smal l  Static-Moment Nonlinear i t ies  

Consider t he  value of %e/% when the nonl inear i t ies  i n  t h e  s t a t i c  
moment are s m a l l .  
ms 
With these conditions,  it is  possible  t o  expand equation (69) f o r  small 
and evaluate each i n t e g r a l  t e r m  by t e r m .  

Here we assume M0 > 0 so that q, = 1, and we assume that 
i s  s m a l l  so that higher order products and cross-products can be neglected. 

m, 
The r e s u l t  can be wr i t t en  as follows 

2 = $ k I ( k  - 1) - 1 b k g ]  + higher order products of ms 

D o  e2 
H, 

(8l-4 

= 1 ,  n = -1 

103.5 . . . n 
204.6 . . . ( n  + 1) 

- n odd ? 
- 



Some of the values of bks f o r  various values of k and s a r e  tabulated as - 
follows : 

2 4 6 8 Lk O 

4 

6 

1 1 x 3  1p 222 
12 96 128 96 768 
a 657 - 127 13415 

256 256 2048 512 65536 
171 939 1169 7745 

160 320 2560 4096 32768 

Expression (76) f o r  t h e  cubic damping and cubic s t a t i c  moment i s  a spec ia l  
case of (818). 
approximate formula f o r  H,,/H,. 

Formula (81a) w i l l  be of use i n  the  construction of a general  

APPROXIMATE GENERAL FORMUIA FOR b e / H 0  

Although t h e  formal representation (69) i s  a very general  r e s u l t ,  it i s  
d i f f i c u l t  t o  evaluate f o r  a r b i t r a r y  combinations of t he  damping and s t a t i c  
moments. Even f o r  t h e  cubic case, t he  evaluation i n  terms of e l l i p t i c  i n t e -  
g r a l s  i s  ra ther  complicated. Based on t h e  spec ia l  cases (79) and (81), how- 
ever, it i s  poss ib le  t o  construct an approximate formula t h a t  i s  extremely 
accurate .  

A perusal 
expressed by 

where ak, and 
funct ions CCks 
t hu 
of 

of t h e  formal solut ion (69) ind ica tes  t h a t  Hoe/Ho can be 

r L %sms 
s>o 

hk 1 Pksms 
s>o - 

pks a r e  funct ions of t h e  parameters k , m 2 , m 4 , *  The 
, and pks depend only weakly on these  parameters, however, and 

aks  and pks t h a t  a r e  independent 
We can do t h i s  by requiring t h a t  equation (82) have t h e  

proper behavior when t h e  nonlinear s t a t i c  moment i s  very la rge  and s t ab le  and 
when the  nonlinear s t a t i c  moment i s  very small; that i s ,  equation (82) should 
have the  same behavior as (79) and (81) i n  these  p a r t i c u l a r  l imits .  

.s we wish t o  f i n d  approximate values of 
mo,m2,m4,. . . . 



. 

0 
1 
2 
3 
4 
5 
6 
7 
8 

, 

co 

. Formula (82) i s  thus guaranteed t o  be valid when the  dominant term 
~ , m 2 , m 4 ,  . . . -, 03 and a l so  when the  terms ~ q , , m ~ , m ~ ,  . . . + 0 .  

W e  begin, somewhat a r b i t r a r i l y ,  by requiring that  h0 = 1. We do t h i s  
that appears i n  the 

It can be shown that if equation (82) i s  t o  
%, and Bks 

&Oms 
i n  order t o  agree with the  leading t e r m  of t h e  sum 

denominator of equation (69). 
reduce t o  both (79) and (81) i n  these respective limits, then 
a r e  given by 

bksyks bks 
%o - Tks ’ alrs = ’ Bks= 

%o - yks 

where 
Some values of 

yksy bks, and I ( n )  a r e  defined by equations (79b) , (81b) , and (81~). 
airs and pk, are presented i n  the  following tables.* 

1 2 3 4 5 6 7 8 ik O 

2 .om0 
1.5349 
1.2500 
1.0568 

-9167 
.8102 
.7266 
-6589 
.6031 

0 

1.2732 
1 -0095 

8398 
.7208 
.6323 
5639 
5092 

,4647 
.4272 

0 

1 .om0 
=&5 
-6797 
.5894 
5213 

-4679 
.4249 
3894 
3596 

0 

0.8488 
6913 - 5875 
5130 
4565 

.4118 

.3754 

.3456 

.3202 
0 

0.7500 
-6143 
5250 

.4608 

.4118 
-3731 
3415 
3152 

.2928 

0 

0.6791 
9 5582 
.4788 
.4218 
3784 

.3439 
3156 

.2920 

.2720 
0 

0.6250 
-5147 
.4428 
3912 

-3519 
.3206 
2950 

-2735 - 2552 
0 

0.5821 
04797 
.hi36 
.3663 - 3301 
.3014 
2779 

.2581 

.2413 
0 

0.5469 
.4510 
9 3895 
3453 

.3118 

.2851 

.2633 

.2450 

.2294 
0 

Note that aks and pks a r e  given f o r  both even and odd values of k 4 

and s. We a r e  s t i l l  considering only symmetric o sc i l l a t ions ,  but can extend 
the  ana lys i s  t o  cases where 
s t a t i c  moment and damping moment be odd functions of the  dependent var iable .  
This i s  done by employing absolute values where needed. For instance,  a qua- 
d r a t i c  s t a t i c  moment would be wr i t ten  a s  

k and/or s a r e  odd by in s i s t i ng  that both the  

M = %y + M,ylYI- 
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pks - . 
0 1 2 3 4 5 6 7 8 dk 

0 
1 
2 
3 
4 
5 
6 
7 
8 
00 

1 .oooo 
-9593 
09375 
-9247 
-9167 
09115 
.9082 
.go60 
-9047 

1.0000 
95 75 

09346 
.9211 
09127 
09073 
-9039 
.go16 
-9003 

1.0000 
-9542 
99297 
99155 
.9067 
.go11 
89 75 

08953 
.8940 

1.0000 
9505 

-9243 
9 9091 
9 8998 
.@40 
.8904 
.8882 
.8868 

1.0000 
.9468 
.9188 

-8929 
.8868 
.8831 
.8808 
-8795 

-9027 

1.0000 
-9434 
-9135 
.8964 
.8861 
8798 

-8758 
.8735 
,8722 

1.0000 
09399 
,9084 
8905 
8797 

.8688 

.8664 

.8650 

*8729 

1 .o 1 .o 1 .o 1.0 1 .o 1 .o 1 .o 

Comparison fo r  a Cubic Moment 

For a cubic moment, equation (82) looks as follows 

1.0000 
-9364 
-9038 
.8850 
-8735 
.8665 
.8621 
08596 
.8582 
1 .o 

The accuracy of t h i s  expression can be demonstrated i n  several  ways. 
we w i l l  compare equation (84) with the  exact solut ion (71) or  (74) when only 
l i n e a r  damping i s  present (h2 = h, = . . . = hn = 0 ) .  
compare a n  approximate formula that i s  given by Murphy i n  reference 7, which, 
i n  our notation, i s  

In  t h i s  way we can a l s o  

1.0000 
-9337 
08997 
.8797 
.8677 
.8603 
8558 
8530 

.8516 
1 .o 

(84) 

F i r  s t ,  

For t he  sake of comparison, we write the  corresponding case of (84) with 
f r ac t ions  as 

Both of these formulas have the correct  l i m i t  as m 2  --* 03 ( b e / H 0  = 2/3), 
but when 
m2 --f 0, yielding 
Hoe/Ho = 1 - (5/16)m2 + O(m22) of t he  present ana lys i s .  For the  s table-s table  
moment the  approximate formula (86) i s  p r a c t i c a l l y  indistinguishable from the  
exact solution when p lo t ted  on the  same graph, and (85) i s  a l s o  a good approx- 
imation for t h i s  case. 
deviations occur i n  the  stable-unstable and unstable-stable moments near t he  
singular points,  which we i l l u s t r a t e  i n  f igures  6(b)  and ( c ) .  

mo = 1, formula (85) does not qui te  have the  correct  behavior as 
b e / H o  = 1 - (3/8)m2 + O(mz2) instead of t he  exact value 

These r e s u l t s  a re  shown i n  f igure  6(a) .  The main 

The approximate 
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(a)  Stable-stable 1-3 s t a t i c  moment. 

2.c 

1.e 

I .€ 

- Ho* 
HO 

1.4 

Li 

I.( 

(b) Stable-unstable 1-3 s t a t i c  moment. 

m2 

(c)  Unstable-stable 1-3 s t a t i c  moment 

Figure 6.- Comparison of approximate so lu t ions  
with exact solution. 

formula (86) of the  present method i s  seen t o  agree very w e l l  with the exact 
curve except i n  the  immediate v ic in i ty  of the  singular points, which are 
m 2  = -1 for the  stable-unstable moment and 
moment. 
mate f o r m u  (85). 

m2 = 2 for the unstable-stable 
The present approximation (86) i s  obviously superior t o  the  approxi- 
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The next check t h a t  we can make on the  accuracy of equation (84) i s  t o  
allow h2 t o  be nonzero. A number of d i f fe ren t  cases were invest igated,  and 
one example for each type of linear-cubic moment i s  shown i n  f igu re  7. 
Figure 7(a) shows r e s u l t s  f o r  a s tab le-s tab le  moment. The magnitude of t h e  
nonl inear i t ies  being considered on t h i s  p l o t  can be visualized by observing 

0 2 4 6 8 10 
m2 

(a) Stable-stable 1-3 s t a t i c  moment; s table-  
unstable or unstable-stable 1-3 damping 
moment. 

1 
Eq.(84) I I 

Y 

0 -.4 -.2 
m2 

- .6 

( b )  Stable-unstable 1-3 s t a t i c  moment; s tab le-  
unstable or unstable-s table  1-3 damping 
moment. 

.40 

.3 2 

.24 

.I 6 

I I 
Eq. (74) 
Eq (84) 

---- .O 8 

0 Numerical integrotlon 
I I I 

0 2 4 6 8 10 12 

( e )  Unstable-stable 1-3 s t a t i c  moment; s table-  
unstable or  unstable-s table  1-3 damping 
moment. 

m 

Figure 7.- Comparison of present  ana lys i s  with 
numerical in tegra t ions .  
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-the small-scale p l o t s  of s t a t i c  and damping moments that appear. 
accurate  representat ions of t he  nonl inear i t ies ,  not sketches, and indicate  a 
wide departure from a l i n e a r  system. The f irst  thing t o  note i n  t h i s  f igure  i s  
t h a t  equation (84) agrees t o  t h i s  scale exactly with equation (71) or (74), 
which i n  t u r n  agrees exact ly  with numerical in tegra t ion  of equation (1). 
second th ing  t o  note i s  t h a t  a negative 
h2/m2 
obtained i n  two ways, Ho negative and H2 pos i t ive  or pos i t ive  and H2 
negative. The first case leads t o  a l i m i t  cycle, the  second a t  a high enough 
amplitude t o  an  unstable s i t ua t ion .  The surprising th ing  i s  that Hoe/H0 i s  
the  same f o r  both of these cases, a f a c t  t h a t  w a s  revealed i n  the  ana lys i s  but  
i s  not i n t u i t i v e l y  obvious. 

These a re  

The 
hz/m2 ( r e c a l l  t h a t  the parameter 

i s  a constant, independent of amplitude, f o r  a given o s c i l l a t o r )  can be 

A l s o  indicated i n  f igure  7(a) i s  the asymptotic behavior of Hoe/& as 

h4,h6, . . . = 0) y i e lds  the  same values as equation (7’3), except 
given by equation (75). 
m2 
that the  coef f ic ien t  of %h2/m2 

It can be shown t h a t  expanding equation (84) f o r  la rge  
(with 

i s  0.289 instead of the  more exact value 
0.296. 

Figures 7(b) and (c )  show representative cases f o r  t he  stable-unstable and 
unstable-stable s t a t i c  moments. Once a g a i n  t he  magnitude of t he  nonl inear i t ies  
being covered i s  shown by the  small-scale p lo ts .  For both of these cases, t he  
accuracy of equation (84) i s  not as good as  it w a s  f o r  the s table-s table  
moment, bu t  t he  agreement i s  s t i l l  excellent except i n  the  immediate v i c i n i t y  
of t h e  s ingular  points .  The f inal  point  t o  be made i s  that the  curves f o r  t he  
l imi t  amplitude, (-h2)Z, presented i n  f igure 3, can be closely duplicated by 
equation (84) except, again, i n  t he  immediate v i c i n i t y  of t he  singular points .  

Comparison fo r  a 1-9 Moment 

A more extreme nonlinear case was next invest igated t o  check the  adequacy 
of t he  approximate solut ion (82) .  
moment ( q , Q , & , H 2  # 0) were considered. 
appears as 

A 1-9 s t a t i c  moment and a 1-3 damping 
For t h i s  case,  equation (82) 

I n  t h i s  case, t he  closed-form solut ion (69) involves hypere l l ip t ic  i n t eg ra l s  
and cannot be evaluated by simple means, but a comparison can be made with 
r e s u l t s  of numerical in tegra t ions  of equation (1). 
i n  f igure  8 f o r  a s table-s table  and unstable-stable s t a t i c  moment. 
stable-unstable case i s  not too  in te res t ing  i n  that the moment i s  e s sen t i a l ly  
l i nea r  almost t o  the singular point and then suddenly goes unstable.)  
of the parameter h2/m2, which w a s  per t inent  f o r  the cubic moment, the  param- 
e t e r  t h a t  remains constant f o r  a given osc i l l a to r  i s  now 
comparisons show that the  approximate solution i s  not so good as it w a s  f o r  a 
l inear-cubic s t a t i c  moment. However, fo r  t he  s table-s table  case,  agreement i s  

These comparisons a r e  made 
(The 

Instead 

h23 Ih21 /me. The 
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s t i l l  excel lent .  For the unstable-stable case, agreement i s  sa t i s f ac to ry  c 

except close t o  t h e  singular point ( i .e. ,  m8 = 5) 

1.2 

- - - Numerical integration 

I .o 

.0 

':; - .6 

.4 

.2 

0 2 4 6 0 IO 12 
ma 

(a)  Stable-stable 1-9 s t a t i c  moment; 1-3 (b) Unstable-stable 1-52 s t a t i c  moment; 1-3 
damping moment damping moment. 

Figure 8.- Comparison of present  ana lys i s  with 
numerical in tegra t ions .  

Comparison f o r  a 1-3-5 Moment 

The f i n a l  comparison that was made w a s  f o r  a 1-3-5 s t a t i c  moment i n  con- 
junction with several  d i f f e ren t  damping moments, t h e  most nonlinear of which 
w a s  a l s o  1-3-5. For t h i s  case, equation (82) appears as 

0.7500mo + 0.52.50m2 + 0.4118m4 
+ mo + 0.9188m~ + 0.8929m4 h4 

Too many p o s s i b i l i t i e s  e x i s t  t o  cover t h i s  case i n  general .  Hence, a par t icu-  
lar  1-3-5 s t a t i c  moment w a s  selected as being very nonlinear, a stable-stable- 
unstable moment. 
damping moments were then chosen, consisting of t he  following: 
term only, (2)  l inear-cubic,  and (3) l inear-cubic-quintic . 
moments are shown i n  f igure  9 (b ) .  Note t h a t  they were selected so  t h a t  t h e  
average value of the  damping moment between 0' and 20' w a s  t he  same i n  each 
case. 

This moment i s  shown i n  f igure  9(a) .  Three d i f f e ren t  
(1) l inea r  

The three  damping 
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(b) Camping moments. 

Figure 9.- Moments used for more complex 
comparisons. 

Equation (88) is  compared with 
numerical *integrat ions of equation (1) 
f o r  t h e  th ree  cases i n  figure 10. 
the scale  p lo t t ed  and f o r  t h e  range 
covered, no differences exis ted.  

To 

A l l  of these comparisons that 
have been presented indicate  t h a t  
equation (82) is  surpr is ingly accurate 
over a wide range of nonl inear i t ies  i n  
both the  s t a t i c  and damping moment. 
With t h i s  es tabl ished,  we w i l l  next 
concern ourselves with - determination 
of t h e  coef f ic ien ts  Ms and Hs from 
data. 

Figure 10.- Comparison of present analysis with 
numerical integrations;  1-3-5 s t a t i c  moment; 
various damping moments. 
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DETERMINATION OF NONLINEAR PARAMETERS FROM DATA 

Formula (82) with (83) can be useful  i n  determining the  nonlinear damping 
parameters of an osc i l l a to r  from a s e t  of observed osc i l l a t ions .  
that a given osc i l l a to r  i s  governed by the  d i f f e r e n t i a l  equation (1). We wish 
t o  infer  from observed osc i l l a t ions  the  appropriate values of HOYH2,H4, . . . 
and Mo,M2,M4, . . . . 

kt us assume 

We assume t h a t  t he  damping i s  small so  t h a t  h E % / V  << 1 (or  more 
appropriately, since 
Ho/W << 1, where W i s  t he  frequency and i s  proportional t o  v). This assump- 
t i o n  i s  normally satisfied i n  ba l l i s t ic - range  t e s t ing .  
t h a t  the  frequency and maximum amplitudes f o r  each half  cycle of t h e  motion 
can be accurately determined from the  data. The ef fec t ive  l i nea r  damping f o r  
each half  cycle i s  then computed by 

v = I%yanl1l2 i s  ac tua l ly  a rb i t r a ry ,  w e  could a l s o  say 

In  addition, we assume 

Using an approximation fo r  the  frequency quadrature (eq. (6711) ) t h a t  i s  
developed i n  reference 13, w e  cgn write an  expression f o r  t he  frequency as a 
function of the  parameters &,M1,M;?, . . as 

U 

0 0  

where 

An E - 
n + 2  

This formula i s  a good approximation f o r  large and small nonl inear i t ies ,  except 
i n  the  v ic in i ty  of the  singular points  of s t a t i c  i n s t a b i l i t y .  The understand- 
ing and use of equation (90a) makes it 
values of En by f i t t i n g  equation (9Oa P t o  a set of frequency versus amplitude 
data t h a t  has been measured f o r  a given o s c i l l a t o r .  For instance,  i f  an 
osc i l l a to r  i s  governed by a l inear-cubic s t a t i c  moment, then equation (90) 
yields  

ossible  t o  ex t rac t  the  appropriate 

The frequency squared then gives a s t r a igh t  l i n e  when p lo t ted  against  y 
- The slope of  t he  curve y ie lds  the  value of M2 and the  w2 intercept  y le lds  
Mo. When h << 1, we note that = %[1 + O(h2)]. Hence, for  small damping, 
t he  values of the  ac tua l  s t a t i c  parameters (M,) a r e  determined. 

- a '  

The cubic 
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moment i s  the  simplest case; for  more general cases the  s t a t i c  moment polyno- 
mial (eq. ( 9 O a ) )  i s  terminated so that an adequate f i t  of the frequency versus 
maximum amplitude data i s  obtained (ref. 13) .  

A similar but s l i gh t ly  more complicated s i tua t ion  ex i s t s  fo r  determining 

%, 
the  m i n g  parameters Hn. 
t a n t  ro le ,  whereas f o r  the determination of the  static-moment parameters 
the  e f f ec t  of the  damping parameters can be neglected. 
as a function of %,H1,H;2, . can be writ ten as 

In t h i s  case, the s t a t i c  parameters play an impor- 

The formula f o r  Hoe 

where equation (69) i s  used t o  determine Bn as 

or,  from equations (82) and (83) , approximately as 

S 

Expression (91a) i s  analogous i n  form to (9Oa). 
coeff ic ients  Bn a r e  functions of &,MlY&, . . . and yay whereas the  coef- 
f i c i e n t s  An a r e  constants. I n  the determination of the damping, however, the 
s t a t i c  parameters can be regarded as already determined by the  use of (90). 
Hence, the coeff ic ients  Bn are functions of ya insofar as determination of 
t he  damping i s  concerned. 

I n  t h i s  case, however, the  

It i s  now useful t o  divide both sides of equation (9la by Bo, obtaining 
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Because Bo,B1,B2, . . . each vary with Y a  i n  a s i m i l a r  manner, t h e  r a t i o s  
Bn/Bo vary slowly with Y a .  
damping data i n  a manner analogous t o  studying frequency data with 
equation ( 9 0 ) .  

Equation (92) can now be used t o  study a s e t  of 

A s  a simple example, assume that a set of data f o r  a given o s c i l l a t o r  has 
been obtained and t h a t  t h e  s t a t i c  moment, completely a r b i t r a r y ,  has been de ter -  
mined with the  use of formula (90). Let  it be assumed that the  damping moment 
can be described by a l i n e a r  t e r m  and a s ingle  a r b i t r a r y  nonlinear t e r m  so 
t h a t  (92) appears as 

B n - -  Hoe - Ho + 2 Hnya 
B O  BO 

(93) 

where n i s  not known. Choosing a p a r t i c u l a r  value of n determines Bn/Bo* 
Then one can p l o t  Hoe/BO versus (Bn/Bo)yan. When t h e  r i g h t  value of n i s  
chosen, t h e  data w i l l  f a l l  on a s t r a i g h t  l i n e .  The slope of t h e  l i n e  y i e lds  
Hn, and the  in te rcept  of t he  l i n e  with the  %,/Bo a x i s  y i e lds  Ho. This w i l l  
be t r u e  regardless  of t h e  p a r t i c u l a r  form of t h e  s t a t i c  moment. 

For an  a r b i t r a r y  damping moment described by a given set of data over an 
amplitude range, t he re  may be severa l  or many combinations of t he  parameters 
HO,H1,H~, . . . that w i l l  f i t  t he  data. This s i t u a t i o n  a l s o  occurs i n  de te r -  
mining the static-moment parameters ( ref .  13 ) .  
member of a c l a s s  of moments t h a t  gives a good f i t .  Thus, a c e r t a i n  amount of 
experience may be usefu l  i n  analyzing t h e  data. For a set of data including 

One must of ten  s e t t l e  f o r  a 
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Figure 11.- Form of data t o  revea l  type of 
nonl inear i ty  i n  damping. 

small angles of ya as wel l  as la rge ,  
one should p l o t  t h e  damping data as 
%,/Bo versus (B2/BO)ya2 (or as a f i r s t  
t r y  aga ins t  Y a 2  s ince B2/B0 va r i e s  
slowly with ya) .  If t h e  data f a l l  on 
a s t r a i g h t  l i n e ,  t h e  damping moment i s  
a cubic as described by (93) with 
n = 2. If t h e  data deviate  from a 
s t r a igh t  l i n e  , which might be expected 
t o  occur at  l a rge r  values of 
can estimate the  magnitude and s ign of 
t h e  next higher order damping t e r m  
needed t o  f i t  t h e  data. I n  such a man- 
ner t he  appropriate form of damping 
polynomial tends t o  suggest i t s e l f .  

yay one 

The more data t h a t  a r e  ava i lab le ,  
t h e  b e t t e r  t h e  damping moment can be 
defined. F ina l ly  t h e  data can be 
f i t t e d  by some curve- f i t t ing  technique 
f o r  various combinations of damping 
parameters. The combinations t h a t  f i t  
t he  data b e s t  a r e  t h e  appropriate ones 
t o  represent the  damping moment. 

I n  f igure  11 t h e  r e s u l t s  of f i g -  
ure  10 are p lo t t ed  i n  t h e  manner sug- 
gested.  Results f o r  t he  linear-cubic 



damping moment f a l l  on a s t r a igh t  l i n e  a s  expected. 
1-3-3 damping data from a s t r a igh t  l i n e  indicates  t h a t  the  damping moment i s  
more complicated than l i n e a r  cubic; t he  f ac t  that the  r e s u l t s  curve downward 
f r o m  a s t r a i g h t  l i n e  indicates  that the  next higher order term required i s  a 
des tab i l iz ing  term, which is, i n  f a c t ,  t he  case. 

The deviation of t h e  

CONCLUDING REMARKS 

The preceding invest igat ion has considered the e f f e c t s  of nonl inear i t ies  

With large wing nonl inear i t ies  and small 
on damped osc i l l a t ions .  
ducted ana ly t i ca l ly  i n  two ways. 
"effect ive" static-moment nonl inear i t ies ,  an approximate solut ion could be 
established by means of an in t eg ra l  equation. On t he  other hand, when the 
damping i s  small but  t he  s t a t i c  nonl inear i t ies  a r b i t r a r i l y  large (a common sit- 
uat ion i n  aerodynamics), an approximate solution could be obtained by means of 
an equivalent f i r s t -o rde r  d i f f e r e n t i a l  equation. 

It was found t h a t  this invest igat ion could be con- 

When the  damping i s  small and the  s t a t i c  nonl inear i t ies  large,  it is  con- 
venient t o  study t h e  cha rac t e r i s t i c s  of the nonlinear o sc i l l a t ions  by means of 
a parameter ca l led  the  "effect ive l i nea r  damping." This parameter i s  r ead i ly  
obtainable from experiment and o f fe r s  a means of deducing the  nonlinear damp- 
ing cha rac t e r i s t i c s  of an osc i l l a to r  from a set of observed osc i l l a t ions .  
Comparisons with some exact solut ions and with numerical solut ions showed t h a t  
t h e  approximate formula derived herein f o r  t h e  e f fec t ive  l i nea r  damping i s  
extremely accurate over a w i d e  range of nonl inear i t ies .  The l i m i t  cycle of a 
nonlinear o sc i l l a t ion  occurs when the  "effective l i nea r  damping" i s  zero, and 
the  l imi t ing  amplitude i s  easy t o  obtain f o r  various combinations of t he  non- 
l i n e a r  damping and s t a t i c  moments. The concept of an e f fec t ive  l i nea r  
damping" i s  thus very useful  i n  analyzing nonlinear damping. 

11 

The in t eg ra l  equation (36) and the f i r s t -o rde r  equation ( 3 9 )  are believed 
t o  be novel formulations f o r  nonlinear o sc i l l a t ion  problems. 
that fu r the r  invest igat ion of these equations would be f r u i t f u l .  

It i s  possible  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., June 27, 1966 
124-07-02-11-21 
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APPENDIX A 

MODIFIED EQUATIONS OF KRYLQFF AND BOGOLIUBOFF 

Here we wish t o  modify t h e  approximation methods of Kkyloff and 
Bogoliuboff ( r e f .  4) f o r  nonlinear o s c i l l a t i o n s  so t h a t  the  pe r t inen t  equations 
f i t  conveniently i n t o  t h e  framework of t he  present ana lys i s .  
t h e  Fourier s e r i e s  expansions of t he  usua l  Kryloff-Bogoliuboff ana lys i s  and 
f i n d  forms of the  amplitude and frequency equations t h a t  are amenable t o  appro- 
p r i a t e  transformations that i n  t u r n  y i e ld  a bas ic  exact  so lu t ion  as a spec ia l  
case. 

We shall forego 

Following Kryloff and Bogoliuboff, consider a nonlinear equation of t he  
following form : 

where f i s  an a r b i t r a r y  function of x and dx/dt. If f z 0, then the  solu- 
t i o n  i s  given by 

x = a cos (v t  + 9) (A2 1 

where a and Cp are a r b i t r a r y  constants. For t he  general  equation ( A l ) ,  we 
assume equation (A2)  t o  be a so lu t ion  with a = a ( t )  and 9 = 9( t )  su i tab ly  
determined funct ions of t .  

L e t  us choose a ( t )  and cp(t) by following the  method of va r i a t ion  of 
parameters f o r  l i nea r  systems. The der iva t ive  of equation (A2)  i s  

(A3 1 

Since we have two functions t o  determine, a ( t )  and C p ( t ) ,  w e  have two conditions 
a t  our disposal. 
t i o n  (Al). 

One, of course, w i l l  be t h e  o r ig ina l  d i f f e r e n t i a l  equa- 
The other we choose as 

da cos (& + 9) - a 9 s i n ( v t  + 9) = o 
d t  d t  

(A4 1 

so that equation (A3)  now reads simply 
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> L s t  as f o r  t h e  case 
i n t o  the  o r ig ina l  equation (Al), w e  ge t  

f E 0. Differentiating equation (A>) and subst i tut ing 

Expressions (Ab) and (A6) are two equations f o r  
da/dt and dCp/dt, we obtain 

da/dt and dCp/dt. Solving 
f o r  

T'cese are the  bas ic  equations of Kryloff and Bogoliuboff. 

Equations (A7a, b )  are coupled and thus must be solved simultaneously. 
Equation (A7a) can be uncoupled, however, i f  w e  introduce, i n  place of 
new independent var iable  T defined as follows: 

t, a 

It follows that 

Equations (A7a ,  b )  may now be wr i t ten  i n  terms of T as follows: 

1 - f ( a  cos T, - a v  s i n  .r)sin T 

1 + - f ( a  cos T, -av s i n  T)cos 

da V 2  - =  
1 dT 

a v2 

- 1 f (a  cos 7, - a v  s i n  T)COS T 2= a v2 
dT 1 

a v  
1 + 3 f ( a  cos 7, - a v  s i n  T)cos 7 

We shall term equations (A9a, b ,  c )  the modified Kryloff-Bogoliuboff equa- 
t ions .  
equation ( A l )  i s  given by 

Equations (A9a)  and (A9c) are the  per t inent  ones since the  solut ion t o  
y = a(-r)cos T. Equation (A9a) i s  a f i r s t -o rde r  
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nonlinear equation for a as a function of T, and it i s  uncoupled from t h e  
other two. When it has been solved, t h e  other equations can be solved a t  l e a s t  
by quadratures. 
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